˽̰Д(sh)W֪RcY
YǰһrεČWrMһȫϵy(tng)ĿY܉ʹ^XĿ˸_҂һݿYɡ҂ԓôYС˽̰Д(sh)W֪RcYϣ
Д(sh)W֪RcY 1
ֱ͈AocQx ABcAOxd>r
ֱ͈AЃɂcQཻ@lֱAĸABcOཻd
ֱ͈AֻһcQ@lֱAо@ΨһĹccABcOd=r(dAĵֱľx)
ƽ(ni)ֱAx+By+C=0cAx^2+y^2+Dx+Ey+F=0λPϵДһ㷽ǣ
1.Ax+By+C=0ɵy=(-C-Ax)/B(B0)x^2+y^2+Dx+Ey+F=0ɞһPxķ
b^2-4ac>0tAcֱ2cAcֱཻ
b^2-4ac=0tAcֱ1cAcֱ
b^2-4ac<0tAcֱ0cAcֱx
2.B=0ֱAx+C=0x=-C/AƽyS(ֱxS)x^2+y^2+Dx+Ey+F=0(x-a)^2+(y-b)^2=r^2y=b˕răɂxֵx1x2Ҏ(gu)x1
x=-C/Ax2rֱcAx;
Д(sh)W֪RcY 2
Tʽı|(zh)
^Ǻ(sh)Tʽnjn(/2)Ǻ(sh)DǵǺ(sh)
õTʽ
ʽһ OK߅ͬĽǵͬһǺ(sh)ֵȣ
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
ʽ OǺ(sh)ֵcǺ(sh)ֵ֮gPϵ
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
ʽ c -Ǻ(sh)ֵ֮gPϵ
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
ʽģ ùʽʽԵõcǺ(sh)ֵ֮gPϵ
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
Д(sh)W֪RcY 3
PĽǣ
1픽ǣһǵă߅քeһǵă߅ķL@ɂǽ픽
2aǣɂǵĺһƽ@ɂa
3ǣɂǵĺһֱǣ@ɂǽ
4aǣйcһl߅ɗl߅鷴Lăɂaǡ
ע⣺aָɂǵĔ(sh)PϵcɂǵλßoPaDŽtҪɂλPϵ
ǵ|(zh)
1픽
2ͬǻȽǵ
3ͬǻȽǵa
Д(sh)W֪RcY 4
䌍ǵĴСc߅L̛]PϵǵĴСQڽǵăɗl߅_ij̶ȡ
ǵoB(ti)x
йcăɗl侀MɵĈDν(angle)@cǵc@ɗl侀ǵăɗl߅
ǵĄӑB(ti)x
һl侀@ĶcһλDһλγɵĈDνǡD侀Ķcǵc_ʼλõ侀ǵʼ߅Kֹλõ侀ǵĽK߅
ǵķ̖
ǵķ̖
ǵķN
ڄӑB(ti)xȡQDķcǶȡǿԷ֞Jֱǡgƽǡܽؓǡ(yu)ӽ0@10NԶλĽǵĶƷQǶ߀λơƵ
Jǣ0С90ĽǽJ
ֱǣ90Ľǽֱ
gǣ90С180Ľǽg
ƽǣ180Ľǽƽ
(yu)ǣ180С360Ѓ(yu)ǡ
ӽǣ0С180ӽJֱgǶӽ
ܽǣ360Ľǽܽ
ؓǣ형rᘷDɵĽǽؓ
ǣrDĽǞǡ
0ǣȵĽ
Ǻaǣɽ֮͞90tɽǻɽ֮͞180tɽǻaǡȽǵȽǵa
픽ǣɗlֱཻõֻһc҃ɂǵă߅鷴L@ӵăɂǽ錦픽ɗlֱཻɃɌ픽錦픽ǵăɂ
aǣɂһl߅һl߅鷴L@NPϵăɂa
(ni)eǣƽеăɗlֱֱlֱأɂǶڃɗlֱ
(ni)ڵlֱăɂô@ӵһǽ(ni)e(alternate interior angle )磺1͡62͡5
ͬԃ(ni)ǣɂǶڽؾͬһڃɗlؾ֮g@λPϵһǻͬԃ(ni)磺1͡52͡6
ͬλǣɂǶڽؾͬԣַքe̎ڱصăɗlֱͬ,@λPϵһǽͬλ(correspondingangles)1͡82͡7
eǣɗlֱlֱ˰˂ɂǶڃɗlؾȣڽؾăɂô@ӵһǽeǡ磺4c73c8
ͬǣɂǶڽؾͬһڃɗlؾ֮⣬@λPϵһǻͬ磺4͡83͡7
K߅ͬĽǣйͬʼ߅ͽK߅ĽǽнK߅ͬĽcaK߅ͬĽnjڼϣ
A{bb=k_360+a,kZ}ʾǶ;
B{bb=2k+a,kZ}ʾ
Д(sh)W֪RcY 5
x
߅ɱăɂν
ֵcȵĸ
ֵһwĔ(sh)磺AB/EF=2
ȲһwĔ(sh)磺AB/EF=21ж
CɂΑԓѱʾcĸڌλZԵġABCcDEFơôf@ɂεČcܛ]ЌڌλϣǷ̖ZԵġABCסDEFôf@ɂεČcˌλϡ
һ(A䶨)
ƽһ߅ֱ߅ڵֱصõcԭơ(@жĶжCĻA@CҪƽоcγɱC)
һεăɂcһεăɂnj,ô@ɂơ
ɂεăɽM߅ɱĊA,ô@ɂ
ɂεM߅ɱô@ɂ
(x)
߅ɱăɂν
ZAͷA
ɂֱУб߅cֱ߅ɱôһƵ
1ɂȫȵ
(ȫƱȞ11)
2ɂ
(ɂΣеһ픽ǻô@ɂơ)
3ɂ߅
(ɂ߅Ƕ60ȣ߅߅)
4ֱб߅ĸγɵ(ĸ)
DεČWҪҌ֪RԔ˽͝Bһ^
Д(sh)W֪RcY 6
ڶʽļӜp
21ʽ
1ʽɔ(sh)ֺĸ˷eMɵʽϵ(sh)ʽĴΔ(sh)ʽָǔ(sh)ĸķeĴ(sh)ʽΪһ(sh)һĸҲdžʽД(sh)ʽǷdžʽPIҪ(sh)ʽД(sh)cĸǷdz˷ePϵĸвĸʽкмp\PϵҲdžʽ
2ʽϵ(sh)ָʽеĔ(sh)(sh)
3헔(sh)ĴΔ(sh)ָʽĸָ(sh)ĺ͡
4ʽׂʽĺД(sh)ʽǷǶʽPIҪ(sh)ʽеÿһǷdžʽÿʽQ헣(sh)ʽĴΔ(sh)ǶʽдΔ(sh)ĴΔ(sh)ʽĴΔ(sh)ָʽΔ(sh)헵ĴΔ(sh)@ǴΔ(sh)Δ(sh)6ʽָڶʽÿһʽeעʽ헰ǰ|(zh)̖
5ĸʾ(sh)ʽʾ(sh)PϵעʽͶʽÿһ헶ǰķ̖
6ʽͶʽy(tng)Qʽ
22ʽļӜp
1ͬ헣ĸͬͬĸָ(sh)Ҳͬcĸǰϵ(sh)0oP
2ͬ헱ͬrMɂl1ĸͬ2ͬĸĴΔ(sh)ͬȱһͬcϵ(sh)СĸoP
3ϲͬ헣Ѷʽеͬ헺ϲһ헡\ýQYɺͷɡ
4ϲͬ헷tϲͬ헺헵ϵ(sh)Ǻϲǰͬ헵ϵ(sh)ĺĸֲ׃
5ȥ̖tȥ̖̖̖׃̖̖ؓȫ׃̖
6ʽӜpһ㲽E
һȥҡ
1̖ȥ̖tȥ̖2Yͬ3ϲͬ헺Ju
Д(sh)W֪RcY 7
1.һԪһηֻ̣һδ֪(sh)δ֪(sh)ĴΔ(sh)1Һδ֪(sh)헵ϵ(sh)ʽһԪһη
2.һԪһη̵Ę˜ʽax+b=0xδ֪(sh)ab֪(sh)a0
3.һԪһη̽ⷨһ㲽E̡ȥĸȥ̖헡ϲͬ헡ϵ(sh)1 z̵Ľ⣩
4.һԪһη̽⑪}
1x}ڡֆ}
мx}ҳʾPϵPI磺С࣬ɣpס@ЩPIгֵʽғ(j)}Oδ֪(sh)}ĿеcPϵ(sh)ʽõ
2Dڡг̆}
ÈDη(sh)W}ǔ(sh)νY˼ڔ(sh)WеwF(xin)мx}}⮋PDʹDθ־ضĺxͨ^DPϵǽQ}PIĶȡòз̵(j)c֮gPϵɰδ֪(sh)֪PĴ(sh)ʽǫ@÷̵ĻA
11.з̽⑪}ijùʽ
1г̆}x=ٶȡrg
2̆}=Чr
3ʆ}=ȫwʣ
4}ٶ=oˮٶ+ˮٶٶ=oˮٶȡˮٶ
5Ʒr}ۃr=rۡ=ۃrɱ
6Lewe}CA=2RSA=R2CL=2a+bSL=abC=4aS=a2Sh(hun)=УR2r2VLw=abcVw=a3VA=R2hVAF= R2h
(ni)Ǵ(sh)WĺҲд(sh)̵ĻASʵĆ}龳ͽQ}Ŀ옷W(sh)WĘȤҪעW߅Ć}оMЧĔ(sh)WӺͺWӌW̽W^Ы@֪Rw(sh)W˼뷽
Д(sh)W֪RcY 8
cc(sh)D}ҊķNͣ
1еĄc}:cε߅\,(j)}еijc׃֮gPϵ,Дຯ(sh)D.
2߅еĄc}:c߅ε߅\,(j)}еijc׃֮gPϵ,Дຯ(sh)D.
3AеĄc}:c؈A\,(j)}еijc׃֮gPϵ,Дຯ(sh)D.
4ֱpタеĄc}:cֱpタ\,(j)}еijc׃֮gPϵ,Дຯ(sh)D.
D\c(sh)D}ҊNͣ
1c߅ε\ӈDΆ}:һlһ\ӽ(jng)^λ߅,(j)}еijc׃֮gPϵ,Mзֶ,Дຯ(sh)D.
2߅c߅ε\ӈDΆ}:һλ߅һ\ӽ(jng)^һ߅,(j)}еijc׃֮gPϵ,Mзֶ,Дຯ(sh)D.
3߅cA\ӈDΆ}:һAһ\ӽ(jng)^һλ߅,һλ߅һ\ӽ(jng)^һA,(j)}еijc׃֮gPϵ,Mзֶ,Дຯ(sh)D.
c}ҊķNͣ
1еĄc}:cε߅\,ͨ^ȫȻ,̽ɵDcԭDε߅ǵPϵ.
2߅еĄc}:c߅ε߅\,ͨ^̽ɵDcԭDεȫȻ,ó߅ǵPϵ.
3AеĄc}:c؈A\,̽ɵDε߅ǵPϵ.
4ֱpタеĄc}:cֱpタ\,̽Ƿڄcɵǵλc֪DƵȆ}.
Y˼
}Ƕκ(sh)ľC}˴ϵ(sh)κ(sh)Ľʽһκ(sh)Ľʽȫȵж|(zh)ֱε|(zh)ƽо|(zh)(sh)νY˼đǽ}PI.
ӑB(ti)Ԇ}ͨnjΈD\^һJRl(f)ӡcoă(ni)(lin)ϵ׃Ҏ(gu)׃׃Ķ_}Ŀ.
(sh)ĈD}һѭIJE
1(j)׃ȡֵ(sh)Mзֶ.
2ÿεĽʽ.
3ÿεĽʽ_ÿΈDΠ.
ÈDֶκ(sh)ČH},Ҫץסc
1׃׃(sh)ֵ׃ĈDˮƽαʾ.
2׃׃(sh)ֵҲ׃p׃r.
3(sh)Dcc.
Д(sh)W֪RcY 9
1(sh)ؓ(sh)P
(1)(sh)0Ĕ(sh)(sh);
ؓ(sh)0СĔ(sh)ؓ(sh);
0Ȳ(sh)Ҳؓ(sh)
(2)(sh)ؓ(sh)ʾ෴x
2픵(sh)ĸ
3P(sh)S
(1)(sh)SҪأԭcλL(sh)Sһlֱ
(2)픵(sh)Ô(sh)Sϵcʾ(sh)Sϵcһ픵(sh)
(3)(sh)S߅Ĕ(sh)߅Ĕ(sh);ʾ(sh)cԭc҂ȣʾؓ(sh)cԭc
(2)෴(sh)̖ͬ^ֵȵăɂ(sh)෴(sh)
ab෴(sh)ta+b=0;
෴(sh)DZ0(sh)෴(sh)ؓ(sh)ؓ(sh)෴(sh)(sh)
(3)^ֵСĔ(sh)0;^ֵDZĔ(sh)Ƿؓ(sh)
4κΔ(sh)Ľ^ֵǷؓ(sh)
С(sh)1ؓ(sh)-1
5ý^ֵ^С
ɂ(sh)^^ֵǂ(sh);
ɂؓ(sh)^Ľ^ֵ^ֵķС
6픵(sh)ӷ
(1)̖ͬăɔ(sh)ӣ͵ķ̖cɂӔ(sh)ķ̖һ£͵Ľ^ֵڃɂӔ(sh)^ֵ֮.
(2)̖෴ăɔ(sh)ӣɂӔ(sh)^ֵȕr͵ķ̖c^ֵ^ļӔ(sh)ķ̖ͬ͵Ľ^ֵڼӔ(sh)^Ľ^ֵpȥ^СĽ^ֵ;ɂӔ(sh)^ֵȕrɂӔ(sh)෴(sh)͞.
(3)һ(sh)ͬԵ@(sh).
ӷĽQɣa+b=b+a
ӷĽYɣ(a+b)+c=a+(b+c)
7픵(sh)p
pȥһ(sh)ڼ@(sh)෴(sh)
8ڰ픵(sh)Ӝp\y(tng)һʽؓ(sh)ǰļ̖ʡԲ.
磺14+12+(-25)+(-17)Ԍʡ̖ʽ14+12 -25-17x1412p25p17Ҳx1412ؓ25ؓ17ĺ.
9픵(sh)ij˷
ɂ(sh)ٰ̖̖ͬؓѽ^ֵ;κΔ(sh)c0˶0
һ_eķ̖ ڶ^ֵ
10˷eķ̖Ĵ_
ׂ픵(sh)(sh) 0 reķ̖ؓ(sh)Ă(sh)_ؓ(sh)攵(sh)reؓ;
ؓ(sh)ż(sh)reׂ픵(sh),һ(sh),e͞
11(sh)
˷e1ăɂ(sh)鵹(sh)0]е(sh)
(sh)ĵ(sh)(sh)ؓ(sh)ĵ(sh)ؓ(sh)(鵹(sh)ăɂ(sh)̖һͬ)
(sh)DZֻ1-1
Д(sh)W֪RcY 10
1.AԈAĞ錦QĵČQD;ͬAȈAİ돽
2.cľxڶLc܉EԶcAL돽ĈA
3.ͬAȈAȵĈAĽĻҵľȡ
4.AǶcľxڶLcļ
5.Aă(ni)ԿLjAĵľxСڰ돽cļ;AⲿԿLjAĵľxڰ돽cļ
6.ͬһֱϵc_һA
7.ֱҵֱƽ@lҲƽăɗl
Փ1
ƽ(ֱ)ֱֱңƽăɗl;
ҵĴֱƽ־(jng)^Aƽăɗl;
ƽһlֱֱƽƽһl
Փ2AăɗlƽAĻȡ
8.ՓͬAȈAɂAĽǡɗlɗlһҵľһMôMȡ
9.Aă(ni)߅εČǻaκһǶă(ni)ǡ
10.(jng)^cҴֱоֱؽ(jng)^A
11.ож(jng)^돽˲Ҵֱ@l돽ֱLjAо
12.о|(zh)Aоֱڽ(jng)^cİ돽
13.(jng)^AҴֱоֱؽ(jng)^c
14.оLĈAһcAăɗlооLȣAĺ@һcBƽփɗlоĊA
15.A߅εăɽM߅ĺǵڃ(ni)
16.ɂAôcһBľϡ
17.
كɈAxd>R+r
ڃɈAd=R+r
ۃɈAཻd>R-r)
܃ɈA(ni)d=R-r(R>r)
݃ɈA(ni)d=r)
18.шAֳn(n3):
BYcõĶ߅@Aă(ni)n߅
ƽ(jng)^cAооĽccĶ߅@An߅Ρ
19.κ߅ζһӈAһ(ni)ЈA@ɂAͬĈA
20.LӋ㹫ʽL=nأR/180;eʽS=nأR^2/360=LR/2
21.(ni)оL= d-(R-r)оL= d-(R+r)
22.һlĈAܽǵĈAĽǵһ롣
23.Փ1ͬȻĈAܽ;ͬAȈAȵĈAܽĻҲ
24.Փ2A(ֱ)ĈAֱܽ;90ĈAֱܽ
Д(sh)W֪RcY 11
һԪһη̶x
ͨ^ֻһδ֪(sh)Һδ֪(sh)ߴ헵ĴΔ(sh)һĵʽһԪһηͨʽax+b=0(ab鳣(sh)a0)һԪһη̌ʽ̃߅ʽ
һԪָ̃Hһδ֪(sh)һָδ֪(sh)ĴΔ(sh)1δ֪(sh)ϵ(sh)0҂ax+b=0(xδ֪(sh)ab֪(sh)a0)һԪһη̵Ę˜ʽ@aδ֪(sh)ϵ(sh)bdz(sh)xĴΔ(sh)1
һԪһη̱ͬrM4lǵʽ;Ʒĸвδ֪(sh);δ֪(sh)ߴ헞1;Ⱥδ֪(sh)헵ϵ(sh)0
һԪһη̵傀Ć}
һʲôǵʽ?1+1=1ǵʽ?
ʾPϵʽӽʽʽɷһǺʽ,κSĔ(sh)ֵʽеĸ,ʽă߅,ɔ(sh)ֽMɵĵʽҲǺʽ,2+4=6,a+b=b+aȶǺʽ;ڶǗlʽ,ҲǷ,@ʽֻȡijЩ(sh)ֵʽеĸr,ʽų,x+y=-5,x+4=7ȶǗlʽ;ìܵʽ,ǟoՓκֵʽеĸ,ʽ,x2=-2,|a|+5=0
һʽ,̖һ,Bʽ,BʽԻһMֻһ̖ĵʽ
ʽc(sh)ʽͬ,ʽке̖,(sh)ʽв̖
ʽЃɂҪ|(zh)1)ʽă߅ϻpȥͬһ(sh)ͬһʽ,ýYȻһʽ;(2)ʽă߅Իͬһ(sh)(sh),ýYȻһʽ
ʲôǷ,ʲôһԪһη?
δ֪(sh)ĵʽ,2x-3=8,x+y=7ДһʽǷǷ,ֻ迴c:һDzǵʽ;Ƿδ֪(sh),ȱһ
ֻһδ֪(sh),Һδ֪(sh)ʽӶʽ,δ֪(sh)ĴΔ(sh)1,ϵ(sh)0ķ̽һԪһη˜ʽax+b=0(a0a,b֪(sh))ֵע1)һʽ̵"Ԫ"""nj@̻ʽж緽2y2+6=3x+2y2,ʽǶԪη,,HһһԪһη(2)ʽ̷ĸвδ֪(sh)ДǷʽ,DzȌ緽x+1/x=2+1/x,ķĸкδ֪(sh)x,,ʽķMл,tx=2,@rȥД,õe`ĽYՓ
ՄΔ(sh)ķ,ָʽ,̵ă߅ʽһԪһηʽԪ(sh)ҴΔ(sh)͵ķ
ʽʲôţĻ|(zh)?
еijЩ헸׃̖,ķ̵һ߅Ƶһ߅׃ν,헵(j)ǵʽĻ|(zh)1
헕rһҪѺδ֪(sh)Ƶʽ߅ⷽ3x-2=4x-5rͿѺδ֪(sh)Ƶ߅,ѳ(sh)Ƶ߅,@ӕ@úЩ
ȥĸ,δ֪(sh)ϵ(sh)1,t(j)ʽĻ|(zh)2Mе
ʽһǷ̆?һǵʽ?
ʽcк֮ܶͬ̎綼õ̖Bӵ,̖҃߅Ǵ(sh)ʽ,߀Ѕ^(q)ẽHǺδ֪(sh)ĵʽ,ǵʽеf,ʽ;^,̲еĵʽ,13+5=18,18-13=5ڵʽ,Ƿ,ʽһǷ̵fDz
塢"ⷽ"c"̵Ľ"һ?
̵Ľʹ҃߅ȵδ֪(sh)ȡ̵ֵⷽĽД̟o^̵̡ĽǽY,ⷽһ^̵Ľе""~,ⷽе""DŽ~,߲ܻ
Д(sh)W֪RcY 12
Ǻ͵Ĺʽ
sin(++)=sincos¡cos+cossin¡cos+coscos¡sin-sinsin¡sin
cos(++)=coscos¡cos-cossin¡sin-sincos¡sin-sinsin¡cos
tan(++)=(tan+tan+tan-tantan¡tan)/(1-tantan-tan¡tan-tanátan)
ǹʽ
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A
ǹʽ
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(/3+a)? tan(/3-a)
Ǻ(sh)ֵ
=0 sin=0 cos=1 tn=0 cot sec=1 csc
=15(/12) sin=(6-2)/4 cos=(6+2)/4 tn=2-3 cot=2+3 sec=6-2 csc=6+2
=22.5(/8) sin=(2-2)/2 cos=(2+2)/2 tn=2-1 cot=2+1 sec=(4-22) csc=(4+22)
a=30(/6) sin=1/2 cos=3/2 tn=3/3 cot=3 sec=23/3 csc=2
=45(/4) sin=2/2 cos=2/2 tn=1 cot=1 sec=2 csc=2
=60(/3) sin=3/2 cos=1/2 tn=3 cot=3/3 sec=2 csc=23/3
=67.5(3/8) sin=(2+2)/2 cos=(2-2)/2 tn=2+1 cot=2-1 sec=(4+22) csc=(4-22)
=75(5/12) sin=(6+2)/4 cos=(6-2)/4 tn=2+3 cot=2-3 sec=6+2 csc=6-2
=90(/2) sin=1 cos=0 tn cot=0 sec csc=1
=180() sin=0 cos=-1 tn=0 cot sec=-1 csc
=270(3/2) sin=-1 cos=0 tn cot=0 sec csc=-1
=360(2) sin=0 cos=1 tn=0 cot sec=1 csc
Ǻ(sh)ӛ혿
1Ǻ(sh)ӛE
桢żָǦ/2ı(sh)ż׃c׃ָǺ(sh)Q׃׃ָ׃׃(֮Ȼ)̖ޡĺxǣѽǦJǣ]n(/2)ǵڎǣĶõʽ߅̖߀̖ؓ
cos(/2+)=-sinʽ߅cos(/2+)n=1߅̖sinѦJԦ/2<(/2+)<Уy=cosxڅ^(q)g(/2)С㣬߅̖ؓ߅-sin
2̖ДE
ȫ,S,T,C,@傀ֿE˼fһރ(ni)κһǵķNǺ(sh)ֵǡ+;ڶރ(ni)ֻǡ+ȫǡ-;ރ(ni)ֻǡ+ȫǡ-;ރ(ni)ֻǡ+ȫǡ-
Ҳ@⣺һָĽȫСָnjǺ(sh)ֵQEδἰĶֵؓ
ASTCZ⼴顰all(ȫ)sintancosՌĸZ^팑ռތǺ(sh)ֵ
3Ǻ(sh)혿
Ǻ(sh)Ǻ(sh)̖ע(sh)DλAżpF(xin)
ͬPϵҪCҪ߅c̎ϵи;
ӛϔ(sh)һBYcƽͣ(sh)Pϵnjcһ(sh)ںɸTʽǺؓС׃JǺòCٲˡһ(sh)攵(sh)ż׃ҕJ̖ԭ(sh)СɽǺ͵ֵνǺֵҷepҷeQ׃αʽͲeͬǶ׃Q
ӋCУעY(sh)ֻ׃y׃
淴ԭtָ罵κͲelʽC˼ָ·
fܹʽһ㣬ʽʽú׃\ü;
һңһpһνǜp罵鷶;
Ǻ(sh)(sh)|(zh)ǶǺ(sh)ֵнȡֵ;
ֱֱ^ÓQǵķ⼯
Д(sh)W֪RcY 13
Д(sh)W֪RcYλ
֪RҪcελƽڃɵҵڃɵ͵һ
1.λ
(1)λxB߅cľνελ
(2)λxBYcľνελ
ע⣺
(1)Ҫελcεо^(q)_оBYһc߅cλBY߅cľ
(2)ελBYcľζBYɵcľΡ
(3)ɂλxg(lin)ϵοϵמr@rελ׃ελ
2.λ
(1)λελƽڵ߅ҵһ.
߅cB(λ)ƽڵBC߅ҵڵ߅һ롣
֪RҪIYελɵС(c)eԭeķ֮һ
Д(sh)W֪RcYƽֱϵ
njƽֱϵă(ni)WϣͬWܺõă(ni)
ƽֱϵ
ƽֱϵ
ƽ(ni)ɗlഹֱԭcغϵĔ(sh)SMƽֱϵ
ˮƽĔ(sh)SQxSMSQֱĔ(sh)SQySvSSĽcƽֱϵԭc
ƽֱϵҪأͬһƽڃɗl(sh)Sۻഹֱԭcغ
Ҏ(gu)
Ҏ(gu)MSȡҞvSȡϞ
چλLȵҎ(gu)һrMSvSλLͬHЕrҲɲͬͬһ(sh)Sϱͬ
Ҏ(gu)ϞһϞڶޡ
挦ƽֱϵ֪RvWͬWѽ(jng)ܺܺõ˰ϣͬWܿԇɹ
Д(sh)W֪RcƽֱϵĘ
ƽֱϵĘɃ(ni)҂һWŶ
ƽֱϵĘ
ͬһƽϻഹֱйԭcăɗl(sh)SƽֱϵQֱϵͨɗl(sh)SքeˮƽλcUֱλȡcϵķքeɗl(sh)SˮƽĔ(sh)SXSMSUֱĔ(sh)SYSvSXSYSy(tng)QSĹԭcOQֱϵԭc
ͨ^挦ƽֱϵĘ֪RvWϣͬWă(ni)ݶܺܺõͬWJW
Д(sh)W֪Rcc˵|(zh)
nj(sh)Wc˵|(zh)֪RWͬWJ濴Ŷ
c˵|(zh)
ƽֱϵϵƽ(ni)κһc҂Դ_ˡ^κһˣ҂ƽ(ni)_ʾһc
ƽ(ni)һcC^cCքeSSڣSSϵČcabքecCęMv(sh)abcC
һcڲͬSc˲һӡ
ϣ挦c˵|(zh)֪RvWͬWܺܺõգͬWڿԇȡÃ(yu)ɿġ
Д(sh)W֪Rcʽֽһ㲽E
Pڔ(sh)Wʽֽһ㲽E(ni)W҂֪Rv⡣
ʽֽһ㲽E
ʽйʽṫʽ]йʽĶʽͿ]\ùʽ헻ϵĶʽͨ÷ֽMֽⷨ\ʮ˷ֽʽԸ飺һᡱסֽMʮ֡
ע⣺ʽֽһҪֽÿһʽٷֹֽtDzȫʽֽ}Ŀ]_ָĂ(ni)ʽֽ⣬ԓָ픵(sh)(ni)ʽֽ˷ֽʽĽYǎׂʽķeʽ
挦ʽֽһ㲽E֪Ră(ni)vWͬWѽ(jng)ܺܺõ˰ϣͬWóɿ
Д(sh)W֪Rcʽֽ
nj(sh)Wʽֽ(ni)ݵ֪RvϣͬWJW
ʽֽ
ʽֽⶨxһʽɎׂʽķeʽ׃νа@ʽʽֽ
ʽֽҪأٽYʽڽYǷeʽ۽Yǵʽ
ʽֽcʽ˷Pϵm(a+b+c)
ʽ
һʽÿ헶еĹʽ@ʽ헵Ĺʽ
ʽ_ϵ(sh)(sh)rȡs(sh)ͬĸȡʹϵ(sh)s(sh)cͬĸȡʹķe@ʽ헵Ĺʽ
ȡʽE
ٴ_ʽڴ_ʽ۹ʽcʽɷeʽ
ֽʽע
ٲʁGĸ
ڲʁG(sh)ע헔(sh)
p̖Ɇ̖
ܽY(sh)ĸʽʽ
ͬʽɃʽ
̖̖ؓ
̖(ni)ͬ헺ϲ
ͨ^挦ʽֽ(ni)֪RvWͬWѽ(jng)ܺܺõ˰ϣă(ni)ݽoͬWČWܺõĎ
Д(sh)W֪RcY 14
һ(sh)c(sh)
a(sh)cʽ
1픵(sh)
(sh)(sh)/0/ؓ(sh)
ڷ֔(sh)֔(sh)/ؓ֔(sh)
(sh)S
ٮһlˮƽֱֱȡһcʾ0(ԭc)xȡijһLλLҎ(gu)ֱҵķ͵õ(sh)S
κһ픵(sh)Ô(sh)Sϵһcʾ
ɂ(sh)ֻз̖ͬô҂Qһ(sh)һ(sh)෴(sh)ҲQ@ɂ(sh)෴(sh)ڔ(sh)Sʾ෴(sh)ăɂcλԭcăɂȣcԭcx
ܔ(sh)SσɂcʾĔ(sh)߅Ŀ߅Ĵ(sh)0ؓ(sh)С0(sh)ؓ(sh)
^ֵ
ڔ(sh)Sһ(sh)ccԭcľxԓ(sh)Ľ^ֵ
(sh)Ľ^ֵıؓ(sh)Ľ^ֵ෴(sh)0Ľ^ֵ0ɂؓ(sh)^С^ֵķС
픵(sh)\㣺ӷ
̖ͬȡͬķ̖ѽ^ֵ
ڮ̖^ֵȕr͞0;^ֵȕrȡ^ֵ^Ĕ(sh)ķ̖^Ľ^ֵpȥ^СĽ^ֵ
һ(sh)c0Ӳ׃
ppȥһ(sh)ڼ@(sh)෴(sh)
˷
كɔ(sh)̖̖ͬؓ^ֵ
κΔ(sh)c0˵0
۳˷e1ăɂ픵(sh)鵹(sh)
ٳһ(sh)ڳһ(sh)ĵ(sh)
0(sh)
˷nͬ(sh)aķe\˷˷ĽYЃaеה(sh)nдΔ(sh)
˷˳Ӝp̖Ҫ̖ġ
2(sh) o픵(sh)oѭh(hun)С(sh)Пo픵(sh)
ƽ
һ(sh)xƽaô@(sh)xͽagƽ
һ(sh)xƽaô@(sh)xͽaƽ
һ(sh)2ƽ/0ƽ0/ؓ(sh)]ƽ
һ(sh)aƽ\_ƽa_(sh)
һ(sh)xaô@(sh)xͽa
(sh)(sh)00ؓ(sh)ؓ(sh)
һ(sh)a\_a_(sh)
(sh)
ٌ(sh)픵(sh)͟o픵(sh)
ڌ(sh)(ni)෴(sh)(sh)^ֵx픵(sh)(ni)෴(sh)(sh)^ֵxȫһ
ÿһ(sh)ڔ(sh)Sϵһcʾ
3(sh)ʽ
(sh)ʽΪһ(sh)һĸҲǴ(sh)ʽ
ϲͬ헣
ĸͬͬĸָ(sh)Ҳͬ헣ͬ
ڰͬ헺ϲһ헾ͽϲͬ
ںϲͬ헕r҂ͬ헵ϵ(sh)ӣĸĸָ(sh)׃
4ʽcʽ
ʽ
ٔ(sh)cĸij˷eĴ(sh)ʽІʽׂʽĺͽжʽʽͶʽy(tng)Qʽ
һʽĸָ(sh)ͽ@ʽĴΔ(sh)
һʽΔ(sh)ߵ헵ĴΔ(sh)@ʽĴΔ(sh)
ʽ\㣺Ӝp\r̖ȥ̖ٺϲͬ
\㣺am+an=a(m+n)
(am)n=amn
(a/b)n=an/bn һӡ
ʽij˷
نʽcʽˣϵ(sh)ͬĸăքeˣĸBָͬ(sh)׃eʽ
چʽcʽǸ(j)Æʽȥ˶ʽÿһٰõķe
۶ʽcʽһʽÿһ헳һʽÿһ헣ٰõķe
ʽɗlƽʽ/ȫƽʽ
ʽij
نʽϵ(sh)ͬה(sh)քe̵ʽ;ֻڱʽﺬеĸtBָͬ(sh)һ̵һʽ
ڶʽԆʽȰ@ʽÿһ헷քeԆʽٰõ
ֽʽһʽɎׂʽķeʽ@N׃@ʽֽʽ
ṫʽ\ùʽֽMֽⷨʮ˷
ʽ
ʽaʽbʽbкзĸô@Ƿʽκһʽĸ0
ڷʽķcĸͬԻͬһ0ʽʽֵ׃
Д(sh)W֪Rcֱλc(sh)Pϵ
k>0tֱăAбǞJ
k<0tֱăAбǞg
ۈDԽ|k|Խ
b>0ֱcySĽcxSϷ
b<0ֱcySĽcxS·
Д(sh)W֪RcY 15
һh(hun)nͷʽı
һ(sh)WĵЧ̌WӰп̌W|(zh)
(sh)Wď̌WעءĻA֪R˼ͻӽ(jng)얹̺͡ܡl(f)F(xin)}}}Q}̌Wy(tng)rgص֪̎R얹c֮gPϵ̌WЧڳWڵď̌W(sh)̎áһA}CϡďʽʹÏ̌WߺĵЧܴߌWl(f)F(xin)}}}ͽQ}ͬrڏ̌WϵĽoY(ni)ݳԇ}ƫyϏ̌WҪƼsп(sh)W̌W|(zh)
h(hun)nͷʽnČ̌Wĕra(chn)
ĿǰAn̸ĸMmȻSϲ׃Sһ̎ڌ`пS[صĽ̌WΣCСMW߳пĽ̌W|(zh)SnČWУRشn}Pߌν̌WУ༉ČWM˳LՄLՄӳW(sh)WAεĂ}һDzϤп(sh)WVĿԇҪͿԇĿ]_ij(sh)Wķǔ(sh)WA֪Rղȫ]J֪YД(sh)W֪R߉Pϵǔ(sh)W}ղ㣬Д(sh)W֪Rđðղǔ(sh)W˼ͻӽ(jng)Ƿȱ`\W֪Rͼ
h(hun)nͷʽČ`оD׃̎nĽ̌Wmϱ^(q)̌WHrij(sh)Wh(hun)n͵ķʽոӿƌWЧďγɃ(yu)|(zh)ij(sh)W̌WYԴ̎Ĕ(sh)WI(y)D׃WĔ(sh)WWʽWnÅcȣ׃ӵĿӵdȤ̽Ķ߳(sh)WĽ̌W|(zh)
h(hun)nͷʽIJԷ
һPI~ĸ綨
1nnǸ(j)WJ֪cҎ(gu)ڌWijһA얹ьW֪RܣM֪Rϵy(tng)ߌW\W֪RQ}Ҫ΄յһNn_չ(sh)WnĿǜع֪£©aȱJ֪YMW}˼뷽γl(f)չ(sh)WW\Ô(sh)W֪RQ}
2h(hun)@һNmϳ(sh)W̌WĸЧnģʽ£
Ҫ
1һvwF(xin)cٌWǰ12°l(f)ďWώr˽WArώ(j)VnˣYόWAMжn
ڶ˼\ࡱwF(xin)cз˼DDI(y)vuиMDDᘌ(ni)ݵyc͌Wec׃ʽDDᘌ(ni)ݵyc͌Wecϵy(tng)DDӆ
LӜyԇwF(xin)ڃcٝLӼrDDcycec֪RڷurDDPעͽСMur
2h(hun)ָ(sh)Wný̌WEչʾ|(zh)vӖ_ˡYur@h(hun)h(hun)hfMoɡֻб֏nøЧĿɳm(x)ܱп̌W|(zh)@PIăcؑձPעһ̎Ҫxn˿VϤопԇ}ľƿWWЧMпָný̌Wеİl(f)չurrMWW˼w{Ŀ옷
Д(sh)W֪RcY 16
һǵĶx
oB(ti)йcăɗl侀MɵĈDνǡ
ӑB(ti)ǿԿһl侀@cһλDһλγɵĈD
һǵă߅һlֱô@ǽƽ;ƽǵһֱ;ֱСƽǵĽǽg;0СֱǵĽǽJǡ
ǵēQ㣺1ܽ=2ƽ=4ֱ=360;
1ƽ=2ֱ=180;
1ֱ=90;
1=60=3600(1=60=3600);
1=60(1=60).
aǵĸ|(zh)
ɂǵĺһƽǣô@ɂǽa
ɂǵĺһֱô@ɂǽ
faָɂǵĔ(sh)Pϵ]λPϵ
|(zh)ͬ(Ƚ);
ͬ(Ƚ)a
ǵı^
ǵĴС^ЃɷN
(1)();
(2)BϷ(ÈAҎ(gu)ֱ)
ƽ־һǵcһl侀@Ƿֳȵăɲ@l侀@ǵƽ־
Ҋ
(1)crPĆ};
(2)ǵӋc
`^(q)
ǵĶ֡λēQ60Mƣ10MQr10MӰ푶e
Д(sh)W֪Rc
1.һԪһηֻ̣һδ֪(sh)δ֪(sh)ĴΔ(sh)1Һδ֪(sh)헵ϵ(sh)ʽһԪһη
2.һԪһη̵Ę˜ʽax+b=0(xδ֪(sh)ab֪(sh)a0)
3.һԪһη̽ⷨһ㲽E̡ȥĸȥ̖헡ϲͬ헡ϵ(sh)1 (z̵Ľ)
4.һԪһη̽⑪}
(1)x}ڡͣֆ}
мx}ҳʾPϵPI磺Сϣ飬ɣpס@ЩPIгֵʽғ(j)}Oδ֪(sh)}ĿеcPϵ(sh)ʽõ
(2)Dڡг̆}
ÈDη(sh)W}ǔ(sh)νY˼ڔ(sh)WеwF(xin)мx}}⮋PDʹDθ־ضĺxͨ^DPϵǽQ}PIĶȡòз̵(j)c֮gPϵ(ɰδ֪(sh)֪)PĴ(sh)ʽǫ@÷̵ĻA
11.з̽⑪}ijùʽ
(1)г̆}x=ٶȡrg;
(2)̆}=Чr;
(3)ʆ}=ȫw;
(4)}ٶ=oˮٶ+ˮٶٶ=oˮٶȡˮٶ;
(5)Ʒr}ۃr=rۡ=ۃrɱ;
(6)Lewe}CA=2RSA=R2CL=2(a+b)SL=abC=4aS=a2Sh(hun)=(R2r2)VLw=abcVw=a3VA=R2hVAF= R2h
(ni)Ǵ(sh)WĺҲд(sh)̵ĻASʵĆ}龳ͽQ}Ŀ옷W(sh)WĘȤҪעW߅Ć}оMЧĔ(sh)WӺͺWӌW̽W^Ы@֪Rw(sh)W˼뷽
Д(sh)W֪RcYP£
Д(sh)W֪RcY12-12
Д(sh)W֪RcY03-11
Д(sh)W(sh)֪RcY04-08
Д(sh)Wʽ֪RcY10-21
Д(sh)W֪RcY11-03
Д(sh)W֪RcY03-01
Д(sh)WA֪RcY06-07
Д(sh)W֪RcY03-07
Д(sh)WA֪RcYw{08-26
Д(sh)W֪RcY20ƪ07-28